Instructions for Use SALSA[®] MLPA[®] Probemix P140 HBA

i

See also the MLPA General Protocol, the product descriptions of the SALSA® MLPA® Reagent Kit, SALSA® Binning DNA SD031, and the Coffalyser.Net Reference Manual.

Visit the SALSA® MLPA® Probemix P140 HBA product page on our website to find Certificates of Analysis and a list of related products.

Product Name	SALSA [®] MLPA [®] Probemix P140 HBA
Version	C1
Catalogue numbers	P140-025R (25 reactions) P140-050R (50 reactions) P140-100R (100 reactions)
Basic UDI-DI	n.a.
Ingredients	Synthetic oligonucleotides, oligonucleotides purified from bacteria, Tris-HCl, EDTA

Additional Test Components	Catalogue Numbers
	EK1-FAM
	EK1-CY5
SALSA® MLPA® Reagent Kit	EK5-FAM
	EK5-CY5
	EK20-FAM
SALSA [®] Binning DNA SD031	SD031

Storage and Shelf Life

Recommended conditions	-25°C	×
------------------------	-------	---

A shelf life of until the expiry date is guaranteed, also after opening when stored in the original packaging under recommended conditions. For the exact expiry date, see the label on the vial. This product should not be exposed to more than 25 freeze-thaw cycles. Do not use the product if the packaging is damaged or opened. Leave chemicals in original containers. Waste material must be disposed of in accordance with the national and local regulations.

Regulatory Status		
IVD	EUROPE CE COLOMBIA ISRAEL	
RUO	ALL OTHER COUNTRIES	

Label Symbols				
IVD	In Vitro Diagnostic		RUO	Research Use Only

More Information: www.mrcholland.com		
	MRC Holland BV; Willem Schoutenstraat 1 1057 DL, Amsterdam, the Netherlands	
E-mail	info@mrcholland.com (information & technical questions); order@mrcholland.com (orders)	
Phone	+31 888 657 200	

Any serious incident that has occurred in relation to this product should be reported to MRC Holland and the competent authority of the Member State or country in which the user and/or the patient is located.

Changes in this Product Version

As compared to version B4, nine probes in the *HBA* region have been removed and 12 new probes have been added. In addition, five new flanking probes centromeric of the *HBA* region have been included and seven reference probes have been replaced.

1. Intended Purpose

The SALSA MLPA Probemix P140 HBA is an in vitro diagnostic (IVD)¹ or research use only (RUO) semi-quantitative assay² for the detection of deletions or duplications in the alpha-globin (*HBA*) gene cluster and its regulatory region in genomic DNA isolated from human peripheral whole blood specimens. P140 HBA can be used to confirm parental aberrations in prenatal samples, in DNA isolated from (un)cultured amniotic fluid obtained in week 16 of pregnancy or later and free from blood contamination, or (un)cultured chorionic villi free from maternal contamination. In addition, this probemix can be used to detect the presence of the Hb Constant Spring mutation in the *HBA2* gene. P140 HBA is intended to confirm a potential cause for and clinical diagnosis of alpha-thalassaemia, for molecular genetic testing of at-risk family members and for carrier screening in at-risk populations.

Copy number variations (CNVs) detected with P140 HBA should be confirmed with a different technique. In particular, CNVs detected by only a single probe always require confirmation by another method. Although most defects in the alpha-globin gene cluster are copy number changes, about 15% of the defects are due to point mutations in the *HBA1* and *HBA2* genes, most of which will not be detected by MLPA. It is therefore recommended to use this assay in combination with sequence analysis.

This device requires in depth knowledge of the complicated human alpha-globin gene cluster and assay results are intended to be used in conjunction with other clinical and diagnostic findings, consistent with professional standards of practice, including confirmation by alternative methods, parental evaluation, clinical genetic evaluation, and counselling, as appropriate. The results of this test should be interpreted by a clinical molecular geneticist or equivalent.

This device is not intended to be used for standalone diagnostic purposes, or for the detection of, or screening for, acquired or somatic genetic aberrations.

¹ Please note that this probemix is for in vitro diagnostic (IVD) use in the countries specified at the end of this product description. In all other countries, the product is for research use only (RUO).

² To be used in combination with a SALSA MLPA Reagent Kit and Coffalyser.Net analysis software.

2. Sample Requirements

Specimen	50-250 ng purified human genomic DNA, free from heparin, <u>treated with RNase (see</u> <u>Appendix)</u> , dissolved in 5 µl TE _{0.1} buffer, pH 8.0-8.5	
Collection Method	Standard methods	
Extraction Method	 Methods tested by MRC Holland: QIAGEN Autopure LS (automated) and QIAamp DNA mini/midi/maxi kit (manual) Promega Wizard Genomic DNA Purification Kit (manual) Salting out (manual) 	

	Sample Types		
Test Sample	 Provided by user 		
Reference Samples (Required)	 Provided by user Extraction method, tissue type, DNA concentration and treatment as similar as possible in all test and reference samples. Have a normal copy number and ≤0.10 standard deviation for all probes except for mutation-specific probes. At least three* independent reference samples required in each experiment for proper data normalisation. Derived from unrelated individuals from families without a history of alpha-thalassaemia. 		
No-DNA Control (Preferably)	 Provided by user TE_{0.1} buffer instead of DNA To check for DNA contamination 		
Binning DNA (Initial Experiment)	 SALSA Binning DNA SD031, provided by MRC Holland Required in initial experiment to determine suitable bin set Should never be used as a reference sample 		
Positive Control Samples (Preferably)	Provided by user, or See the table of positive samples on the probemix produc page on our website		
Validation Samples (Required)	 This probemix contains target probes that target sequences with natural variation. The validation experiments of this probemix should result in a standard deviation ≤0.10 for all reference probes. In the validation experiments of this probemix, the peaks of the mutation-specific probes are expected to be absent in the majority of samples from healthy individuals. 		

*When testing >21 samples, include one extra reference for each 7 test samples.

3. Test Procedure

See the MLPA General Protocol.

4. Quality Control, Data Analysis, and Troubleshooting

Qualit	ity Control Fragments in the Probemix		
Length (nt)	Function		
64-70-76-82	DNA quantity control fragments		
88-96	DNA denaturation control fragments		
92	Benchmark fragment		
100	Chromosome X presence control fragment		
105	Chromosome Y presence control fragment		

<u>Coffalyser.Net</u> should be used for data analysis in combination with the appropriate product and lot-specific Coffalyser sheet. See the <u>Coffalyser.Net Reference Manual</u> for details on data analysis and quality control.

For troubleshooting help, see the additional resources offered on our <u>support portal</u>.

5. Interpretation of Results

Determining Typical Values in Normal and Affected Populations

The typical final ratio (FR) values stated in the copy number tables were determined in a validation study with samples containing abnormal copy numbers. The standard deviation of each individual probe over all the reference samples was ≤ 0.10 .

Expected Results of Reference Probes

Final Ratio (FR)	Copy Number	Description
0.80 - 1.20	2	Normal

Typical Results of Probes Targeting Two Copies (HBA region)

Final Ratio (FR)	Copy Number	Description
0	0	Homozygous deletion
0.40 - 0.65	1	Heterozygous deletion
0.80 - 1.20	2	Normal
1.30 - 1.65	3	Heterozygous duplication
		Homozygous duplication
1.75 – 2.15	4	or
		Heterozygous triplication
All other values	-	Ambiguous

Typical Results of Probes Targeting Four Copies

(172, 214 and 220 nt probes detect a sequence that is present
in both HBA1 and HBA2.)

Final Ratio (FR)	Copy Number	Description		
FR = 0	0	Homozygous deletion		
FR ≈ 0.25	1	Heterozygous deletion of HBA1 and homozygous deletion of HBA2 or vice versa		
FR ≈ 0.50	2	Heterozygous deletion of HBA1 and HBA2, or homozygous deletion of HBA1 or HBA2		
FR ≈ 0.75	3	Heterozygous deletion of HBA1 or HBA2		
FR ≈ 1.00	4	Normal		
FR ≈ 1.25	5	Heterozygous duplication of HBA1 or HBA2		
FR ≈ 1.50	6	Heterozygous duplication of HBA1 and HBA2, or homozygous duplication of HBA1 or HBA2		
FR ≈ 1.75	7	Heterozygous duplication of HBA1 and homozygous duplication of HBA2 or		
		vice versa		

The tables illustrate the relationship between final probe ratio and corresponding copy number. Test results are expected to center around these values. Ambiguous values can indicate a technical problem, but may also reflect a biological cause such as mosaicism or a SNV influencing a single probe. It is important to use Coffalyser.Net to determine the significance of values found.

Possible Results of Mutation Probe

Signal Strength	Mutation Status			
≥10% median peak	Constant Spring mutation			
height reference	((HBA2:c.427T>C) is detected			
probes	(expected only in positive samples)			
<10% median peak height reference probes	Constant Spring mutation ((HBA2:c.427T>C) is not detected (expected in most samples from healthy individuals)			

Examples of MLPA results obtained with this probemix can be found on the P140 HBA Product Page on <u>www.mrcholland.com</u>

6. Performance Characteristics

The diagnostic sensitivity of the P140 probemix is estimated to be close to 85%, since ~85% of all alphathalassaemias are caused by deletions most of which can be detected by the MLPA assay (http://www.ncbi.nlm.nih.gov/books/NBK1435/) The diagnostic specificity is considered to be ~50%. Defects in the HBA genes can lead to two clinically significant forms of alphathalassemia. In the lethal Hb Bart's hydrops fetalis syndrome, the two HBA1 and two HBA2 copies are all absent or defect. In HbH disease, only one functional HBA copy remains. However, with the total loss of only one or two copies of HBA1 and/or HBA2, alpha-thalassemia silent carriers present no clinical phenotype. In addition, this probemix can also detect the Hb Constant Spring mutation, the occurrence of which depends on the population investigated. The analytical sensitivity and specificity for the detection of the Hb Constant Spring mutation and deletions/duplications in the alpha-globin gene cluster (based on a 2004-2024 literature review) is very high and can be considered >99%.

Analytical performance can be compromised by: SNVs or other polymorphisms in the DNA target sequence, impurities in the DNA sample, incomplete DNA denaturation, the use of insufficient or too much sample DNA, the use of insufficient or unsuitable reference samples, problems with capillary electrophoresis or a poor data normalisation procedure and other technical errors. The MLPA General Protocol contains technical guidelines and information on data evaluation/normalisation.

Content – Probe Details Sorted by Chromosomal Position

	Chr. position	Target	Exon	Distance to next probe	Mutation	Length (nt)	Probe number	Warnings
		POL R3K					19236-125316	- f
Inplasa HBA region HBA do before HBZ) 30.0 Hb 382 0.4600-L0375 16p13.3 HBZ region Upstram (3.0 Kb 5.7 Kb 364 0.4426-L23866 $0 \times$ 16p13.3 HBZ region Upstram (3.3 kb 3.3 kb 346 0.4622-L04001 $0 \times$ 16p13.3 HBZ region Downstream 6.9 kb 436 17214-SP0457- $X \times$ 16p13.3 HBZ region Downstream 0.5 kb 391 18097-L2521 $0 \times$ 16p13.3 HBA region (bptream 0.5 kb 391 18097-L2521 $0 \times$ 16p13.3 HBA region (bptream 0.6 kb 337 18094-L2522 $0 \times$ 16p13.3 HBA region (bptream 0.6 kb 337 18094-L2522 $0 \times$ 16p13.3 HBA region (bptream 0.6 kb 202 18094-L2522 $0 \times$ $0 \times$ 16p13.3 HBA region (bptream 0.1 kb 214 18094-L2522 $0 \times$ $1 \times$ 16p13.3								· L
16p13.3 H8Z region Upstream (0.0 kb befor H8Z) 5.7 kb 364 04926-12386 0×1 16p13.3 H8Z region Upstream (3.3 kb befor H8Z) 3.3 kb 3.4 kb 346 04022-12386 0×1 16p13.3 H8Z region Downstream (0.4 keven H8Z) 7.8 kb 292 04624-104004 $0 - \epsilon$ 16p13.3 H8Z region Between H8Z region 100 mstream (0.4 keven H8Z) 7.8 kb 292 04624-104004 $0 - \epsilon$ 16p13.3 H8Z region Between H8Z region 10 between H8Z region 0.4 ks region 0.4 ks set face 0.4 ks 16p13.3 H8A region 0.4 ks between H8Z region 0.4 ks 0.4 ks 1.4 ks 0.4 ks								
Image: Constraint of the								Ø
	16013.3	HBZ region		3.3 KD		346		Ø«
	16p13.3	HBZ		6.9 kb		436		Ж«
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16p13.3	5	(Between HBZ & HBZP1)	7.8 kb		292	04624-L04004	Ø ~ «
	16p13.3		HBAP1	2.5 kb		184	04637-L04018	Ø«
	16p13.3	HBA2 region		0.5 kb		391	18097-L22521	Ø # «
16p13.3 HBA2 region (0,9,kb before HBA2) 0.2 kb 147 18098-L2252 $\emptyset < \ast$ 16p13.3 HBA18 HBA2 Exon 1 HBA2 0.6 kb 228 18092-L2251 $\emptyset # < \ast$ 16p13.3 HBA18 HBA2 Exon 1 HBA2 0.1 kb 2214 18894-L06288 $> \Delta < \ast$ 16p13.3 HBA18 HBA2 Exon 1 HBA2 0.1 kb 244 04633-L23748 $\emptyset # < \ast$ 16p13.3 HBA2 Intron 2 0.1 kb 244 04633-L23748 $\emptyset # < $ 16p13.3 HBA2 CS Exon 3 HBA2 0.1 kb 172 15857-L21812 $* [≤ < < < < < > [≤ / ≤ / ≤] \emptyset # < 16p13.3 HBA region (0.4 kb after HBA2 and 2.5 kb before HBA1) 0.5 kb 190 18096-L22520 \emptyset # < 16p13.3 HBA region (0.4 kb after HBA2 and 2.5 kb before HBA1) 0.6 kb 202 18880-L24428 \emptyset # < 16p13.3 HBA1 region Upstream 0.6 kb 202 18880-L24428 \emptyset # < 16p13.3 HBA1 region Upstream 0.6 kb 226 08494-L08417 \pm Ø < 16p13.3 HBA$	16p13.3	HBA2 region		1.6 kb		373	18090-L08415	Ø # «
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16p13.3	HBA2 region	(0.9 kb before HBA2)	0.2 kb		147	18098-L22522	Ø«
150133 HBA18 HBA2 Exon 1 HBA2 0.4 kb 214 18881-L06288 $\$ f \land \ast$ 16p13.3 HBA2 Intron 2 0.1 kb 160 08498-L08422 $\emptyset \# \times$ 16p13.3 HBA2 Intron 2 0.1 kb 244 04633-L23748 $\emptyset \# \times$ 16p13.3 HBA2 CS Exon 3 HBA2 0.1 kb 172 15857-L21812 $\$ [\propto \times] [\infty] [\infty$	16p13.3	HBA2 region		0.6 kb		328	18092-L22516	Ø # «
15p13.3 HBA2 Intron 2 0.1 kb 160 08498-108422 $\emptyset \# *$ 16p13.3 HBA18 HBA2 Exon 3 HBA2 0.1 kb 244 04633-123748 $\emptyset \# *$ 16p13.3 HBA2 CS Exon 3 HBA2 0.1 kb 172 15857-121812 $* \epsilon * 16p13.3 HBA1 region Upstream 0.6 kb 226 18093-122517 \emptyset \# * 16p13.3 HBA1 region Upstream 0.6 kb 226 18093-122517 \emptyset \# * 16p13.3 HBA1 Intron 2 0.1 kb 2165 08498-12062 \$ \epsilon * \epsilon * $						220	18099-L22524	»∫±«
Ifsp13.3 HBA2 Intron 2 0.1 kb 244 04633-123748 \emptyset # 16p13.3 HBA18 HBA2 Exon 3 HBA2 0.1 kb 172 15857L21812 $* \int < $	16p13.3	HBA1& HBA2	Exon 1 HBA2	0.4 kb		214	18881-L06288	»∫∆«
16p13.3 HBA18 HBA2 Exon 3 HBA2 0.1 kb 172 1587+121812 >f 16p13.3 HBA2 CS Exon 3 0.5 kb Hb Constant Spring 136 S0585-SP0043- L09493 § $K f <$ 16p13.3 HBA region (0.4 kb after HBA2 and 2.5 kb before HBA1) 0.5 kb 190 18096-L22520 $\emptyset # <$ 16p13.3 HBA1 region (0.9 kb after HBA2 and 2.0 kb before HBA1) 0.6 kb 202 18880-L24428 $\emptyset # <$ 16p13.3 HBA1 region Upstream (1.5 kb before HBA1) 0.6 kb 236 08494-L08417 $\pm 0 <$ 16p13.3 HBA1 region Upstream (0.9 kb before HBA1) 0.3 kb 337 14855-L23604 $\emptyset <$ 16p13.3 HBA18 HBA2 Exon 1 HBA1 0.1 kb 226 18093-L22517 $\emptyset # <$ 16p13.3 HBA18 HBA2 Exon 1 HBA1 0.1 kb 214 18881-L0628 $s f \Delta <$ 16p13.3 HBA1 Intron 2 0.1 kb 155 08494-L2850 $\emptyset # <$ 16p13.3 HBA1 Intron 2 0.1 kb 155 08494-L2850 $\emptyset # <$ 16p13.3 HBA1								
16p13.3HBA2 CSExon 30.5 kbHb Constant Spring136S0385-SP0043- L09493 $\S \times J \ll$ 16p13.3HBA region(0.4 kb after HBA2 and 2.5 kb before HBA1)0.5 kb19018096-L22520 $\emptyset \# \ll$ 16p13.3HBA region(0.9 kb after HBA2) 2.0 kb before HBA1)0.6 kb20218880-L2428 $\emptyset \# \ll$ 16p13.3HBA1 regionUpstream (0.9 kb after HBA1)0.6 kb25608494-L08417 $\pm 0 \ll$ 16p13.3HBA1 regionUpstream (0.9 kb before HBA1)0.3 kb33714855-L23604 $\emptyset \ll$ 16p13.3HBA1 regionUpstream (0.6 kb before HBA1)0.3 kb22618093-L22517 $\emptyset \# \ll$ 16p13.3HBA1 regionUpstream (0.6 kb before HBA1)0.1 kb22018093-L22517 $\emptyset \# \ll$ 16p13.3HBA1 regionUpstream (0.6 kb before HBA1)0.1 kb22018093-L22517 $\emptyset \# \ll$ 16p13.3HBA1 HBA1Intron 20.1 kb21418881-L06288 $> J \Delta \ll$ 16p13.3HBA1 HBA1Intron 20.1 kb25004633-L23600 $\emptyset \# \ll$ 16p13.3HBA1 (0.1 kb after HBA1)0.3 kb17215857-L21812 $* \ll $ 16p13.3HBA1 HBA1Downstream (0.4 kb after HBA1)0.3 kb15408499+L23594 $\emptyset \ll$ 16p13.3HBA1 (0.1 kb after HBA1)0.3 kb15404638-L23602 $\emptyset \ll$ 16p13.3HBA1 (0.1 kb after HBA1)1.9 kb28304638-L23602 $\emptyset \ll$ 16p13								
Ibpl.3.3 HBA 2 US EX01 3 0.5 k0 Spring 136 L09493 S M 1 « 16p13.3 HBA region (0.4 kb after HBA2 and 2.5 kb before HBA1) 0.5 kb 190 18096-L22520 Ø # « 16p13.3 HBA region (0.9 kb after HBA2 and 2.0 kb before HBA1) 0.6 kb 202 18880-L24428 Ø # « 16p13.3 HBA1 region Upstream (1.5 kb before HBA1) 0.6 kb 337 14855-L23604 Ø « 16p13.3 HBA1 region Upstream (0.9 kb before HBA1) 0.3 kb 337 14855-L23604 Ø « 16p13.3 HBA1 region Upstream (0.6 kb before HBA1) 0.4 kb 226 18093-L22517 Ø # « 16p13.3 HBA1 BHA2 Exon 1 HBA1 0.1 kb 220 18891-L26264 Ø (~ 16p13.3 HBA1 Intron 2 0.1 kb 214 1881-L0628 » f 4 ~ 16p13.3 HBA1 Intron 2 0.1 kb 250 04638-L2607 Ø # « 16p13.3 HBA1 Downstream (0.1 kb after HBA1) 0.3 kb 172<	16p13.3	HBA1& HBA2	Exon 3 HBA2	0.1 kb		172		»∫«
Ibpl3.3 HBA region 2.5 kb before HBA1 0.5 kb 190 18096-L2250 Ø # « 16p13.3 HBA region (0.9 kb after HBA2 and 2.0 kb before HBA1) 0.6 kb 202 18880-L2428 Ø # « 16p13.3 HBA1 region Upstream (1.5 kb before HBA1) 0.6 kb 256 08494-L08417 ± Ø « 16p13.3 HBA1 region Upstream (0.9 kb before HBA1) 0.3 kb 337 14855-L23604 Ø « 16p13.3 HBA1 region Upstream (0.6 kb before HBA1) 0.6 kb 226 18093-L22517 Ø # « 16p13.3 HBA1 RBA2 Exon 1 HBA1 0.1 kb 220 18094-L22524 » ∫ ± « 16p13.3 HBA1 RHA2 Exon 1 HBA1 0.1 kb 216 18094-L2507 Ø # « 16p13.3 HBA1 Intron 2 0.1 kb 165 08498-L21607 Ø # « 16p13.3 HBA1 Intron 2 0.1 kb 1250 04638-L23602 Ø « 16p13.3 HBA1 Intron 2 0.1 kb 283 04638-L23602 Ø «	16p13.3	HBA2 CS		0.5 kb		136		§Ж∫«
Ibp13.3 HBA region 2.0 kb before HBA1) 0.6 kb 202 18880-124428 Ø # « 16p13.3 HBA1 region Upstream (1.5 kb before HBA1) 0.6 kb 256 08494-L08417 ± Ø « 16p13.3 HBA1 region Upstream (0.9 kb before HBA1) 0.3 kb 337 14855-L23604 Ø « 16p13.3 HBA1 region Upstream (0.9 kb before HBA1) 0.4 kb 220 18093-L22517 Ø # « 16p13.3 HBA18 HBA2 Exon 1 HBA1 0.1 kb 220 18099-L22524 » f ± « 16p13.3 HBA18 HBA2 Exon 1 HBA1 0.4 kb 214 18881-L06288 » f ± « 16p13.3 HBA1 Intron 2 0.1 kb 250 04633-L23600 Ø # « 16p13.3 HBA1 Intron 2 0.1 kb 250 04638-L23602 Ø « 16p13.3 HBA1 Bornstream (0.4 kb after HBA1) 0.3 kb 154 08499-L2354 Ø « 16p13.3 HBA1 region Downstream (0.4 kb after HBA1) 1.9 kb 283 04638-L23602 <	16p13.3	HBA region		0.5 kb		190	18096-L22520	Ø # «
Ibp13.3 <i>HBA1</i> region(1.5 kb before <i>HBA1</i>)0.6 kb256 08494.108417 $\pm 0 \ll$ 16p13.3 <i>HBA1</i> regionUpstream (0.9 kb before <i>HBA1</i>)0.3 kb33714855-L23604 $\emptyset \ll$ 16p13.3 <i>HBA1</i> region(0.6 kb before <i>HBA1</i>)0.6 kb22618093-L22517 $\emptyset \# \ll$ 16p13.3 <i>HBA1</i> 8 <i>HBA2</i> Exon 1 <i>HBA1</i> 0.1 kb22018099-L22524 $\gg f \pm \infty$ 16p13.3 <i>HBA1</i> 8 <i>HBA2</i> Exon 1 <i>HBA1</i> 0.4 kb21418881-L06288 $\gg f \Delta \ll$ 16p13.3 <i>HBA1</i> Intron 20.1 kb25004633-L23600 $\emptyset \# \ll$ 16p13.3 <i>HBA1</i> Intron 20.1 kb25004633-L23600 $\emptyset \# \ll$ 16p13.3 <i>HBA1</i> Downstream0.3 kb17215857-L21812 $\$ \int \ll $ 16p13.3 <i>HBA1</i> Converteam0.3 kb15408499-L23594 $\emptyset \ll$ 16p13.3 <i>HBA1</i> regionDownstream0.3 kb15408499-L23502 $\emptyset \ll$ 16p13.3 <i>HBA1</i> Exon 325.1 kb40019233-L25313 \ll 16p13.3 <i>HBQ1</i> Exon 325.1 kb40019233-L2514 \neg 16p13.3 <i>HBQ1</i> Exon 325.1 kb40019232-L2514 \neg 16p13.3 <i>HBQ1</i> Exon 325.1 kb40019233-L2513 \ll 16p13.3 <i>HBQ1</i> Exon 325.1 kb40019232-L2514 \neg 16p13.3 <i>HBQ1</i> Exon 325.1 kb40019232-L2514 \neg 16p13.3	16p13.3	HBA region		0.6 kb		202	18880-L24428	Ø # «
Ibp13.3HBA1 region(0.9 kb before HBA1)0.3 kb33714855L23604 $\emptyset \ll$ 16p13.3HBA1 regionUpstream (0.6 kb before HBA1)0.6 kb22618093-L22517 $\emptyset \# \ll$ 16p13.3HBA18 HBA2Exon 1 HBA10.1 kb22018099-L22524 $\gg f \pm \ll$ 16p13.3HBA18 HBA2Exon 1 HBA10.4 kb21418881-L06288 $\gg f \pm \ll$ 16p13.3HBA1Intron 20.1 kb16508498-L21607 $\emptyset \# \ll$ 16p13.3HBA1Intron 20.1 kb15504633-L23600 $\emptyset \# \ll$ 16p13.3HBA1Intron 20.1 kb17215857-L21812 $\gg f \ll$ 16p13.3HBA1Downstream (0.1 kb after HBA1)0.3 kb15408499-L23594 $\emptyset \ll$ 16p13.3HBA1 regionDownstream (0.4 kb after HBA1)1.9 kb28304638-L23602 $\emptyset \ll$ 16p13.3HBA1 regionDownstream (2.3 kb after HBA1)1.4 kb31004639-L04020 $\emptyset \ll$ 16p13.3HBA1Exon 32.51 kb40019233-L2513 \ll 16p13.3HBQ1Exon 32.51 kb40019233-L25313 \sim 16p13.3RGS1116.3 kb47218102-L20488 \neg 16p13.3RGS1116.3 kb47218102-L20488 \neg 16p13.3AZN119.4 kb41817227-L20554 \neg 16p13.3AZN119.4 kb41817227-L20554 \neg 16p13.3RGS11119.4 kb418 <td< td=""><td>16p13.3</td><td>HBA1 region</td><td></td><td>0.6 kb</td><td></td><td>256</td><td>08494-L08417</td><td>±Ø«</td></td<>	16p13.3	HBA1 region		0.6 kb		256	08494-L08417	±Ø«
Iop 13.3HBA1 region(0.6 kb before HBA1)0.6 kb22618093-122517 \emptyset # «16p13.3HBA1& HBA2Exon 1 HBA10.1 kb22018099-122524 \gg [\pm «16p13.3HBA1& HBA2Exon 1 HBA10.4 kb21418881-06288 \gg [Δ «16p13.3HBA1Intron 20.1 kb16508498-121607 \emptyset # «16p13.3HBA1Intron 20.1 kb25004633-123600 \emptyset # «16p13.3HBA1Downstream0.3 kb17215857-121812 \gg [«16p13.3HBA1Downstream0.3 kb15408499-123594 \emptyset «16p13.3HBA1 regionDownstream0.3 kb15408499-123502 \emptyset «16p13.3HBA1 regionDownstream1.9 kb28304638-123602 \emptyset «16p13.3HBA1 regionDownstream1.9 kb28304638-123602 \emptyset «16p13.3HBA1 regionDownstream1.4 kb31004639-104020 \emptyset «16p13.3HBQ1Exon 325.1 kb4001923-125313«16p13.3IIFG331.9 kb44517227-120554~16p13.3RGS1116.3 kb47218102-120488~16p13.3DECR226217613-123601~16p13.3DECR226217613-123601~16p13.3DECR226217613-123601~14Reference26903075-1199662qReference <td>16p13.3</td> <td>HBA1 region</td> <td>(0.9 kb before HBA1)</td> <td>0.3 kb</td> <td></td> <td>337</td> <td>14855-L23604</td> <td>Ø «</td>	16p13.3	HBA1 region	(0.9 kb before HBA1)	0.3 kb		337	14855-L23604	Ø «
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		(0.6 kb before HBA1)	0.6 kb		226	18093-L22517	Ø # «
16p13.3HBA1Intron 20.1 kb16508498-L21607 \emptyset # «16p13.3HBA1Intron 20.1 kb25004633-L23600 \emptyset # «16p13.3HBA18 HBA2Exon 3 HBA10.3 kb17215857-L21812 \gg \int «16p13.3HBA1Downstream (0.1 kb after HBA1)0.3 kb15408499-L23594 \emptyset «16p13.3HBA1 regionDownstream (0.4 kb after HBA1)1.9 kb28304638-L23602 \emptyset «16p13.3HBA1 regionDownstream (2.3 kb after HBA1)1.4 kb31004639-L04020 \emptyset «16p13.3HBQ1Exon 325.1 kb40019233-L25313«16p13.3LUC7L33.5 kb27715859-L2160~16p13.3LUC7L31.9 kb44517227-L20554~16p13.3RGS11116.3 kb47218102-L20488~ «16p13.3DECR226217613-L2301~16p13.3DECR226217613-L2301~16p13.3DECR22690375-L19961qReference28811435-L121632qReference13000797-L136453pReference13000797-L136453pReference13000797-L136451qReference13000797-L136453pReference13000797-L136453pReference13000797-L13645		HBA1& HBA2	Exon 1 HBA1	0.1 kb		220	18099-L22524	»∫±«
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		HBA1& HBA2	Exon 1 HBA1	0.4 kb		214	18881-L06288	»∫∆«
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16p13.3	HBA1		0.1 kb				
16p13.3 HBA1 Downstream (0.1 kb after HBA1) 0.3 kb 154 08499-L23594 Ø « 16p13.3 HBA1 region Downstream (0.4 kb after HBA1) 1.9 kb 283 04638-L23602 Ø « 16p13.3 HBA1 region Downstream (2.3 kb after HBA1) 1.4 kb 310 04639-L04020 Ø « 16p13.3 HBQ1 Exon 3 25.1 kb 400 19233-L25313 « 16p13.3 LUC7L 33.5 kb 277 15859-L21960 ¬ 16p13.3 ITFG3 31.9 kb 445 17227-L20554 ¬ 16p13.3 RGS11 16.3 kb 472 18102-L20488 ~ « 16p13.3 DECR2 262 17613-L23601 ¬ 14 Reference 238 11435-L12163 2 2q Reference 409 03272-L02709 5p Reference 269 03075-L19996 3q Reference 130 00797-L13645 8p Referenc	16p13.3	HBA1	Intron 2	0.1 kb		250	04633-L23600	Ø # «
Ibp13.3 HBA1 (0.1 kb after HBA1) 0.3 kb 154 08499-L23594 Ø « 16p13.3 HBA1 region Downstream (0.4 kb after HBA1) 1.9 kb 283 04638-L23602 Ø « 16p13.3 HBA1 region Downstream (2.3 kb after HBA1) 1.4 kb 310 04639-L04020 Ø « 16p13.3 HBQ1 Exon 3 25.1 kb 400 19233-L25313 « 16p13.3 LUC7L 33.5 kb 277 15859-L21960 ¬ 16p13.3 ITFG3 31.9 kb 4455 17227-L20554 ¬ 16p13.3 RGS11 16.3 kb 472 18102-L20488 ¬ « 16p13.3 AXIN1 119.4 kb 418 17212-L13393 ¬ « 16p13.3 DECR2 283 11435-L126301 ¬ 14p13.3 AXIN1 119.4 kb 418 17212-L13393 ~ « 16p13.3 DECR2 283 11435-L1263 2q Reference 280 0300	16p13.3	HBA1& HBA2	Exon 3 HBA1	0.3 kb		172	15857-L21812	»∫«
16p13.3HBA1 regionDownstream $(0.4 kb after HBA1)$ 1.9 kb28304638-L23602Ø «16p13.3HBA1 regionDownstream $(2.3 kb after HBA1)$ 1.4 kb31004639-L04020Ø «16p13.3HBQ1Exon 325.1 kb40019233-L25313«16p13.3LUC7LSass bb27715859-L21960¬16p13.3ILUC7L33.5 kb27715859-L21960¬16p13.3ITFG3116.3 kb44517227-L20554¬16p13.3RGS1116.3 kb47218102-L20488¬ «16p13.3DECR2116.3 kb47218102-L20488¬ «16p13.3DECR21119.4 kb41817212-L13393¬ «16p13.3DECR21119.4 kb41817212-L13393¬ «16p13.3DECR211119.4 kb41817212-L0488¬ «16p13.3DECR21119.4 kb41817212-L13393¬ «16p13.3DECR21119.4 kb41817212-L13393¬ «16p13.4DECR21119.4 kb41817212-L13393¬ «16p13.3DECR211119.4 kb41817212-L13393¬ «16p13.4DECR211119.4 kb41817212-L13393¬ «16p13.3DECR21119.4 kb41817212-L133931< «	16p13.3	HBA1		0.3 kb		154	08499-L23594	Ø «
Ibp13.3 HBAT region (2.3 kb after HBA1) 1.4 kb 310 04639-L04020 Ø « 16p13.3 HBQ1 Exon 3 25.1 kb 400 19233-L25313 « 16p13.3 LUC7L 33.5 kb 277 15859-L21960 ¬ 16p13.3 ITFG3 31.9 kb 445 17227-L20554 ¬ 16p13.3 RGS11 16.3 kb 472 18102-L20488 ¬ « 16p13.3 AXIN1 119.4 kb 418 17212-L13393 ¬ « 16p13.3 DECR2 262 17613-L23601 ¬ 14p Reference 238 11435-L12163 2q Reference 481 15318-L17117 3q Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference<	16p13.3	HBA1 region	Downstream (0.4 kb after <i>HBA1</i>)	1.9 kb		283	04638-L23602	Ø«
16p13.3 LUC7L 33.5 kb 277 15859-L21960 ¬ 16p13.3 17FG3 31.9 kb 445 17227-L20554 ¬ 16p13.3 RGS11 16.3 kb 472 18102-L20488 ¬ 16p13.3 AXIN1 119.4 kb 418 17212-L13393 ¬<	16p13.3	HBA1 region		1.4 kb		310	04639-L04020	Ø «
16p13.3 17FG3 31.9 kb 445 17227-L20554 - 16p13.3 RGS11 16.3 kb 472 18102-L20488 -< «	16p13.3	HBQ1	Exon 3	25.1 kb		400	19233-L25313	«
16p13.3 RGS11 16.3 kb 472 18102-L20488 « 16p13.3 AXIN1 119.4 kb 418 17212-L13393 « 16p13.3 DECR2 262 17613-L23601 1q Reference 238 11435-L12163 2q Reference 481 15318-L17117 3q Reference 409 03272-L02709 5p Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 355 00547-L00116 11q Reference 208 11331-L12056 13q Reference 300 03250-L02687	16p13.3	LUC7L		33.5 kb		277	15859-L21960	-
16p13.3 RGS11 16.3 kb 472 18102-L20488 « 16p13.3 AXIN1 119.4 kb 418 17212-L13393 « 16p13.3 DECR2 262 17613-L23601 1q Reference 238 11435-L12163 2q Reference 481 15318-L17117 3q Reference 409 03272-L02709 5p Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 355 00547-L00116 11q Reference 208 11331-L12056 13q Reference 300 03250-L02687	16p13.3			31.9 kb		445	17227-L20554	-
16p13.3 DECR2 262 17613-L23601 ¬ 1q Reference 238 11435-L12163	16p13.3	RGS11				472	18102-L20488	¬ «
16p13.3 DECR2 262 17613-L23601 ¬ 1q Reference 238 11435-L12163						418		¬ «
1q Reference 238 11435-L12163 2q Reference 481 15318-L17117 3q Reference 409 03272-L02709 5p Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 208 11331-L12056 13q Reference 300 03250-L02687						262		-
2q Reference 481 15318-L17117 3q Reference 409 03272-L02709 5p Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687	1q	Reference				238	11435-L12163	
3q Reference 409 0.3272-L02709 5p Reference 269 0.3075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
5p Reference 269 03075-L19996 5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687						-		
5q Reference 130 00797-L13645 8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
8p Reference 142 07641-L07326 10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
10q Reference 196 05846-L11214 11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
11q Reference 355 00547-L00116 12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
12p Reference 208 11331-L12056 13q Reference 300 03250-L02687								
13q Reference 300 03250-L02687								
	15q	Reference				454	07607-L07292	

Probe lengths may vary slightly depending on capillary electrophoresis instrument settings. Please see the most up to date Coffalyser sheet for exact probe lengths obtained at MRC Holland.

The exon numbers of the alpha-globin (*HBA*) gene cluster are derived from MANE project and are based on MANE Select transcript. For more information, see the probe sequences document available on the product page at <u>www.mrcholland.com</u>. Chromosomal bands are based on: hg18.

7. Precautions and Warnings

Probe warnings

- § This probe will only generate a signal when the Hb Constant Spring mutation is present (*HBA2*:c.427T>C, p.*143Glnext*31).
- These probes are flanking probes, included to help determine the extent of a deletion/duplication. Copy number alterations of flanking probes are unlikely to be related to the condition tested.
- ± In addition to the single nucleotide variants (SNVs) present in Table 1 of the interpretation-aid document, available on the Product Page, the presence of SNV rs370305736 (frequently found in African populations) and rs555255920 can affect the signal of probe 220 nt and 256 nt respectively.
- Δ This probe may be sensitive to certain experimental variations. Aberrant results should be treated with caution.
- « These probes are located in or near a GC-rich region. A low signal can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation.
- X These probes consist of three parts and have two ligation sites. A low signal of these probes can be due to depurination of the sample DNA, e.g. due to insufficient buffering capacity or a prolonged denaturation time. When this occurs in reference samples, it can look like an increased signal in the test samples.
- Ø These probes target sequences outside of the known coding region. Copy number alterations of only one of these probes are of unknown clinical significance.
- » These probes detect sequences that are present in both *HBA1* and *HBA2*. Deletion of a single target site results in a 20-25% decrease in the signal intensity of this probe.
- ∫ These probes are RNA sensitive. See box on RNAse sample treatment, in Appendix
- This probe has been reported to be deleted/duplicated in several samples from Southeast Asia. This is probably a benign polymorphism referred to as the 'Asian polymorphism' (see Table 1 in the interpretation-aid document available on the Product Page, with final ratios for a selected subset of frequent polymorphisms). The exact deletion boundaries are currently unknown, but seem to cover at least position 20361-23609 of the Genbank NG_000006.1 reference sequence.
- £ Duplications have been described at this location, which is very close to the telomere. SALSA MLPA Probemix P036 Subtelomeres Mix 1 can be used to confirm copy number changes at this position.
- # In the sequence detected by these probes, there is only a small difference between HBA1 and HBA2. Due to the close proximity of these genes, it is possible that in some healthy individuals the HBA2 sequence is changed by gene conversion into the HBA1 sequence (or vice versa), without any clinical consequences.

Probemix-specific precautions

1. This product is not known to contain any harmful agents. Based on the concentrations present, none of the ingredients are hazardous as defined by the Hazard Communication Standard. A Safety Data Sheet (SDS) is not required for this product: none of the ingredients contain dangerous substances at concentrations requiring distribution of an SDS (as per Regulation (EC) No 1272/2008 [EU-GHS/CLP] and 1907/2006 [REACH] and amendments).

- Sample or technical artefacts may appear as a (mosaic) copy number change of the whole/partial gene. Whole/partial gene deletions or duplications should therefore be confirmed by analysis of an independent DNA sample, to exclude false positive results.
- 3. Small changes (e.g. SNVs, small indels) in the sequence targeted by a probe can cause false positive results, even when >20 nt from the probe ligation site. Sequence changes can reduce the probe signal by preventing ligation of the probe oligonucleotides or by destabilising the binding of a probe oligonucleotide to the sample DNA. Deviations detected by this product should be confirmed, and singleprobe deviations always require confirmation. Sequencing of the target region is recommended. Please contact MRC Holland for more information: info@mrcholland.com.. Please note that any probe can be affected by known or novel SNVs. See Table 1 in the interpretation-aid document available on the Product Page (www.mrcholland.com), for final ratios for a selected subset of frequent polymorphisms. Additionally, SNVs rs370305736 and rs555255920 mentioned in this document require additional caution.
- 4. Copy number alterations of reference probes are unlikely to be related to the condition tested.
- 5. Large deletions are often detected with this probemix. The slope correction algorithm in Coffalyser.Net may confuse a large deletion for sloping, leading to an incorrectly applied slope correction and a false warning or ambiguous results for multiple probes. Contact MRC Holland if you suspect that this happened.
- 6. The 178 nt and 382 nt probes target sequences within the hypersensitive site (HS)40, which is one of the upstream regulatory elements. Deletion of these elements leads to an α 0 -thalassaemia phenotype, even though the *HBA* genes are present and intact. Several studies indicate that HS40 is the most conserved element and is considered as the major regulatory element (Zhang et al. 2002; Viprakasit et al. 2006). However, it has also been shown that homozygous deletion of HS40 does not lead to the lethal Hb Bart's hydrops fetalis syndrome (Sollaino et al. 2010).
- 7. Multiple CpG islands are located within the alpha-globin gene cluster. Therefore, a low signal for probes targeting this cluster can be caused by salt contamination in the DNA sample leading to incomplete DNA denaturation, especially of GC-rich regions.
- 8. Not all deletions in the alpha-globin gene cluster can be discriminated from each other using this Probemix:
 - Various - α ^{3.7} and - α ^{4.2} deletions with different breakpoints exist. The same holds true for the complementary α -triplications. In certain - α ^{3.7} deletion cases, it will not be possible to establish which parts of the *HBA1* and *HBA2* genes have been deleted. Homozygous - α ^{3.7} deletion samples can be a combination of two different - α ^{3.7} deletions. To the best of our knowledge, distinguishing the various - α ^{3.7} or the various - α ^{4.2} deletions has no clinical significance. The final ratios for different deletions and duplications can be found in Table 2 in the interpretation-aid document available on the Product Page (www.mrcholland.com).

SALSA® MLPA®

- The -- FIL and -- THAI deletions will display identical final ratios. The same accounts for the -- MED2 and -- Dutch1 deletions (final ratios for different deletions and duplications can be found in Table 3 in the interpretation-aid document available on the Product Page (www.mrcholland.com.)
- 9. Presence of three *HBA* genes on one allele (α -triplication) is relatively common. The α -triplication can be detected by the P140 probemix, but should be considered as a polymorphism as it is not associated with an α thalassaemia phenotype (Goossens et al. 1980). However, co-inheritance of multiple alpha-globin genes and betathalassaemia may lead to relatively severe (transfusiondependent) beta-thalassaemia intermedia (Camaschella et al. 1997, Harteveld et al. 2008).
- 10. Five probe pairs target locations with very small sequence differences between *HBA1* and *HBA2*: the 160 & 165 nt intron 2 probes, the 244 & 250 nt intron 2 probes, the 391 & 190 nt probes, the 328 & 226 nt probes, and the 373 & 202 nt probes. When one of the probes in such a probe pair has a ~50% reduced probe signal (ratio 0.5), while the other has a ~50% increased probe signal (ratio 1.5), it is possible that this is a benign polymorphism due to a sequence exchange between *HBA1* and *HBA2* rather than a true deletion and duplication (see Table 1 in the interpretation-aid document available on the Product Page, with final ratios for a selected subset of frequent polymorphisms)
- 11. The 'African polymorphism' is a gene conversion between HBA2 and HBA1, causing the intron 2 typical for HBA1 to be located also in HBA2 or vice versa. The HBA genes have identical coding sequences, but differ at two sites in intron 2: a point mutation T>G (HBA2: T; HBA1: G) and a 8 nt insertion (where a single G (HBA2) is replaced by CTCGGCCC (HBA1)). Probe pairs at 160 & 165 nt and at 244 & 250 nt, respectively, detect these intron 2 differences. In the case of African polymorphism 1, the HBA2 target sites (160 & 244 nt) have disappeared and HBA2 intron 2 seems deleted. In fact, however, the HBA2 gene is intact and contains the HBA1 intronic sequence, as can be seen by an increased probe signal for the 165 & 250 nt HBA1 intron 2 probes (vice versa for the African polymorphism 2), (see Table 1 in the interpretation-aid document available on the HBA Product Page, with final ratios for a selected subset of frequent polymorphisms).
- 12. A combination of polymorphism 3B, polymorphism 4B (see Table 1 in the interpretation-aid document available on the Product Page, with final ratios for a selected subset of frequent polymorphisms) and SNP rs555255920 affecting the 256 nt probe has frequently been reported by users of the P140 probemix.

<u>Technique-specific precautions</u> See the <u>MLPA General Protocol</u>.

8. Limitations

Probemix-specific limitations

- The mutation-specific probe(s) can only detect the presence of the mutation and should not be used to determine zygosity.
- 2. The combination of a deletion on one chromosome and a similarly sized duplication on the other chromosome may result in a false negative MLPA result as there is no net change in copy number.
- 3. Very rarely, two different types of deletions are detected by the P140 probemix in a single patient. It is not possible to determine if two (not-overlapping) deletions are in cis or in trans, but testing of family members can provide more information.

<u>Technique-specific limitations</u> See the <u>MLPA General Protocol</u>.

9. References Cited in this IFU

- Camaschella C et al. (1997). Different haematological phenotypes caused by the interaction of triplicated alphaglobin genes and heterozygous beta-thalassemia. Am J Hematol. 55(2):83-8.
- 2. Goossens M et al. (1980). Triplicated alpha-globin loci in humans. Proc Natl Acad Sci USA. 77:518-21.
- 3. Harteveld CL et al. (2008). Segmental duplications involving the alpha-globin gene cluster are causing betathalassemia intermedia phenotypes in beta-thalassemia heterozygous patients. Blood Cells Mol Dis. 40(3):312-6.
- Sollaino MC et al. (2010). Homozygous deletion of the major alpha-globin regulatory element (MCS-R2) responsible for a severe case of haemoglobin H disease. Blood. 116(12):2193-4.
- 5. Viprakasit V et al. (2006). A novel deletion causing alpha thalassemia clarifies the importance of the major human alpha globin regulatory element. Blood. 107(9):3811-2.
- Zhang HB et al. (2002). The control of expression of the alpha-globin gene cluster. Int J Hematol. 76(5):420-6.

Implemented changes in the product description

Version C1-08 – 12 March 2025 (03S)

- Product description updated to new template.
- Exon numbering for *HBZ* was updated.
- Additional information has been added to the exon column for probe: 18880-L24428
- SNVs rs750737757 and rs556530054 can affect the probe signal. However, the warnings for these SNVs present in previous product description versions have been replaced by a general warning for small sequence changes, included in section Precautions and Warnings.
- Final DNA concentration after the addition of RNase A was added to the RNase sample treatment box in the Appendix.
- Warnings for probes targeting sequences outside of the known coding region were added for probes: 04926-L23886, 04622-L04001, 04624-L04004, 04637-L04018, 18097-L22521, 18090-L08415, 18098-L22522, 18092-L22516, 08498-L08422, 04633-L23748, 18096-L22520, 18880-L24428, 08494-L08417, 14855-L23604, 18093-L22517, 08498-L21607, 04633-L23600, 08499-L23594 04638-L23602, 04639-L04020.
- Warning for RNA sensitivity added to probe : S0585-SP0043-L09493.
- Interpretation-aid tables present in the old Product Description will now be downloadable from the Product Page.

MRC Holland, SALSA, MLPA, digitalMLPA, Coffalyser.Net, Coffalyser digitalMLPA, and their logos are trademarks or registered trademarks of MRC Holland BV. All other brands and names herein are the property of their respective owners.

10. Appendix

RNAse sample treatment (essential for HBA and HBB MLPA probemixes)

Since *HBA* is heavily expressed in red blood cells, an RNAse treatment of samples is essential for (whole-)blood-derived samples. Even though white blood cells are less affected by RNA, they should still be treated with RNAse. Without RNAse treatment, the probes targeting HBA1 and HBA2 exons (i.e., the 172, 214 and 220 nt probes, and the 136 nt probe in the presence of the Hb Constant Spring mutation) can bind to HBA mRNA, thereby reducing the effective concentration of probes. Please note that some automatic DNA purification methods (e.g. Roche MagNA Pure) do not include an RNAse treatment. The following method can be used to treat RNA containing DNA samples:

Mix 4 µl sample and 1 µl 0.5 mg/ml RNAse A. Incubate 30 minutes at 37 °C. Continue with the 5 minutes 98 °C DNA denaturation step of the MLPA General Protocol.

When using between 50-250 ng of DNA, the DNA concentration after the addition of RNase A should be 10-50 ng/µl.

RNAse A is extremely stable; it can be diluted in TE and stored at -20 °C. We recommend RNAse A from Promega (A7973; 4 mg/ml solution), diluted 8 fold in TE (1 ml of 4 mg/ml RNAse is sufficient for ~8000 samples). Do not use more than the recommended amount.